
zkFAITH: Soonami’s Zero-Knowledge
Identification and Authentication Protocol

Author: Mina Namazi Concept: Duncan Ross

September 15, 2022

Abstract

Privacy-preserving identification systems that enable individuals to prove their
eligibility for using specific services are a challenging topic. Cryptographic tech-
niques are deployed to construct proofs of identity across the internet. However,
they do not prevent users from forging and submitting fake data. We design, im-
plement, and evaluate a protocol called ”zkFAITH” in this paper. The zkFAITH is
a new approach introduced in this paper to obtain a verified zero-knowledge iden-
tity unique to each individual. The protocol verifies the identity of the individuals
and issues the identity without revealing any information to the authenticator or
verifier by leveraging a zero-knowledge proof system. After an authority evalu-
ates the information’s correnctness and confirms it by making a tag, we deploy a
CL signature scheme to create a statement in addition to a zero-knowledge proof.
The users can deploy their zkFAITH to access various services. In this paper, we
show the design and implementation of the zkFAITH with the generated proofs in
real-world scenarios and discuss its scalability.

1 Introduction
A blockchain is a distributed computation record between many devices known as
nodes with no trusted setup. All the nodes access the updated data, run the required
calculations locally, combine them, and provide the globally agreed, immutable his-
tory. However, the parties’ identity and transmitted data might be publicly available.
This widespread availability of individual data was not desirable to FinTech. Hence,
privacy-preserving distributed systems received significant attention. Solutions such as
mixing, decoys in tokens such as Monero, and systems based on zkSNARKs, such as
Zcash [5], are introduced to protect sensitive information of individuals.

The expected privacy in finance is not limited to the blockchain space. Anony-
mous identification and authentication is another zone the privacy of the users plays a
crucial role. It is common for group members to log in to a service without revealing
their identity. Hiding the transaction history is required in some scenarios when users
are willing to take actions anonymously, such as voting without linking to each other.
Moreover, individuals are required to prove their eligibility to access various organiza-
tions’ services. For example, a streaming platform requires a user’s age to be above 18

1



and their location in Canada. If users desire to register on this platform and access the
content, they need to show their ID card information, to prove their age and location.
A problem appears when the id card contains other information such as nationality,
height, eye color, and religion that the streaming platform does not need to see or that
the user is unwilling to reveal to the streaming platform. Therefore, a universal identi-
fication protocol is required to allow people to prove they are legitimate users without
revealing extra information.

In decentralized platforms, stakeholders deploy cryptographic methods to provide
privacy-preserving identification and authentication mechanism. Practical computa-
tional integrity proof systems, like SNARKs, STARKs, and Bulletproofs, found nu-
merous potential use cases in the recent investigation. These proofs are required not
to reveal any additional information beyond the statement of the prover; hence they
are called zero-knowledge (ZK). In ZK scheme, a prover, holds a statement willing to
convince the other party, verifier, of its correctness without revealing any further infor-
mation. Often, these proof systems require expensive computations. When ZK proofs
are deployed as a verification system, the proof size must remain small regardless of
the computation complexity.

Additional to scalability challenges of ZK proofs in real-world scenarios, they have
no built-in mechanism to prevent individuals from submitting fake data. Current tech-
niques cannot prevent if a malicious user who is not eligible to access a streaming
platform use the id card information of another eligible user to gain access.
Our contribution. This work focuses on developing a zero-knowledge identification
method with data integrity in decentralized platforms called ”zkFAITH.” The proposal
combines various phases working as a black box without any trusted authority. First, it
allows users to build a credential that perfectly hides their essential information while
using it. The information inside the credential gets authentication from government-
approved authorities. After the credential issuance, the user can prove to possess a
valid credential with zero knowledge. Showing the zkFAITH leaks no data beyond the
statement the user is willing to prove. Later, to access the organization’s services or
perform any financial transactions, zkFAITH can be attached to the request/transaction.
The verifier accepts the request/transaction only if convinced that the data inside the
request/transaction belongs to the zkFAITH’s owner and the identity is legitimately
issued. The proposed protocol provides a scalable solution to protect the privacy of
individuals and provide data integrity simultaneously.

The rest of this paper is structured as follows. In Section 2, we comprehensively
review recent developments in blockchain in which zero-knowledge proofs are used
and implemented. In section 3, we describe our proposal of zkFAITH identity after ex-
plaining the core cryptographic schemes to build it. Section 5 concludes the discussion
of the proposed solution and represents open lines of future work.

2 Related Work
This section describes the previous work that has been done in literature to achieve
an efficient zero-knowledge identity. We discuss the advantages and disadvantages of
their work and illustrate the differences between our solutions.

2



2.1 Deco
DECO [1], is a decentralized oracle for TLS, which is source-agnostic and supports any
website running standard TLS with no server-side cooperation. Similar to our scenario,
a prover commits to a piece of personal and private data and proves to a verifier that
this data is obtained from a TLS server. It also generates proof of knowledge of the
data. For example, in the proving age scenario, the proof is the predicate ”y/m/d is
the prover’s birth date and the current date - which should be at least 18 years.” DECO
authenticates the provided information of the prover. The verifier must be convinced
that the asserted proof about the data is accurate and that this data is certainly obtained
from the website. The protocol is privacy-preserving since the verifier only observes
the provided proofs about the data and checks their validity. These proofs leak no
information to the verifier about the data or the prover.

The protocol comprises a three-party handshake phase to establish session keys, a
query execution phase where the prover fetches the server for data, a proof generation
phase where the prover proves the query is well-formed and the response satisfies the
desired condition.

Deco claims to solve the problem of authenticity in zero-knowledge credential pro-
tocols. However, the three-party handshake and the deployed secret-sharing schemes
seem expensive operations. We achieve authenticity in our proposed solution with no
TLS and handshake requirements. In our scenario, an authenticator is a government-
approved entity with no access to the parameters to execute the protocol and solely
provides authenticity.

2.2 zh-cred
A similar approach to our proposed solution is the zk-cred system introduced in [2].
Usually, the digital platform’s users must prove they are legitimate to access the plat-
form. They prove they are human or located in a specific place to access the local
services. The zk-cred avoids making unrealistic assumptions where multiple trusted
sources exist to issue credentials. It removes the burden of the credential issuers to
store various signing keys and proposes a solution using the general zero-knowledge
proof system.

A credential in zk-creds is a commitment to arbitrary attributes, such as the fields
name or birth date from a passport, placed on a list. The users must convince the
credential issuer about possessing it. They must keep a witness to the credential’s
membership in the issued list and ask the issuer for an updated witness. They deployed
a Merkle tree approach to save the list. Therefore, just updating one witness element
in the tree is straightforward. The issuer maintains a list of publically verifiable cre-
dentials. Anyone can access the list and verify the issue process. Later, users desire
to show their credentials and prove some criteria, such as age. They produce zero-
knowledge proof that their credential is listed in a Merkle tree of all issued credentials
and meets the access criteria, which is publically verifiable. The revocation mechanism
is simply removing the credential from the list.

A credential ”cred” is a commitment to some attributes matching the digital iden-
tity documents with some random information. They use the Pederson commitment

3



scheme. There is an issuer who keeps the list of credentials in a list as a Merkle tree.
The user sends cred to the issuer with supporting documents such as a zero-knowledge
proof or a digital signature to convince the issuer of specific criteria. If the issuer is
satisfied, it adds the cred to its list and returns the Merkle authentication path.

Although the zk-cred approach is efficient, in real-world scenarios, it is unrealistic
to adopt it by the issuers. Therefore, as the main difference with our proposed solu-
tion, we assume this entity has no access to the zero-knowledge-proof system’s public
parameters and cannot issue or verify any signature/proof. Moreover, our scheme pro-
vides data integrity before issuing any ZK identity to prevent obtaining an id on sub-
mitting fake information. Hence, in our scenario, an extra trusted party approved by the
government controls the integrity of the submitted information. The identity issuance
happens by an unbounded DAO upon receiving an authentication tag from this entity.

3 zkFAITH
This section describes our proposal for a zero-knowledge identification and authentica-
tion system of ”zkFAITH”. First, we describe the core building blocks to construct our
solution. Then, we explain the zkFAITH protocol and its deployment in real-life sce-
narios. Informally, the parties are issued a zero-knowledge identity after a third-party
government-approved authority confirms their information. Each party can obtain var-
ious identities on their different legal documents. However, a unique identification
number, such as the passport number of each party, is a shared value in all identities.
The parties can prove that they own a legitimate identity based on their information
with zero knowledge. These data are updatable. Therefore, if a passport is expired,
the user can ask to update their zero-knowledge identity. The zkFAITH is unique, and
there is no way that a user is issued two different identities for the same information.
In case of malicious activity, such as sharing the credential, the deployed revocation
mechanism removes the issued credential and is no longer functional. We explain the
details of the protocol in the following sections.

3.1 Preliminaries
This section provides the core cryptographic primitives required to develop our zk-
FAITH proposal.

3.1.1 Notation.

We denote sampling uniformly from a set S by y ← S. Proof of knowledge of a
relation R = {(x;w) : P (x,w)} for an instance x is a proof of knowledge of the
witness w such that P (x,w) is satisfied, for a predicate P . A commitment to a value x
with randomness r is Com(x; r). The calligraphic letter X denotes the parties playing
in the protocol. Value x inside brace [x] shows the encrypted version of x.

3.1.2 Non-Interactive Zero-Knowledge Proof of Knowledge (NIZK)

Groth [3] introduced a proof system with the following functionalities.

4



• NIZK.Setup(1λ) → pp: generates public parameters for the bilinear group. It
is the input to all other algorithms.

• NIZK.Prove(x,w) → π: generates a proof, where x is the statement and w is
the witness.

• NIZK.Verify(π, x) → {0, 1}: verifies the proof π with respect to x and returns
1 as a truthy value.

3.1.3 CL Signatures

A digital signature scheme is a way of signing documents and a functional build-
ing block to construct an anonymous identification protocol. In this paper, to build
an efficient identity-based solution for individuals, they must get a signature on their
confidential information. Hence, we deploy Camenisch-Lysyanskaya (CL) signature
scheme [4] to obtain the signature. Later, we explain how to prove the knowledge of
this signature on their information in a zero-knowledge way.

CL.Setup: inputs the security parameter 1λ and outputs ppCL = (G, G, g, g, e).
These parameters are inputs of all the other algorithms.

CL.KeyGen: each user does the following

• Choose x← Zq, y ← Zq , and for 1 ≤ i ≤ l, zi ← Zq .

• Let X = gx, Y = gy and, for 1 ≤ i ≤ l, Zi = gzi , Wi = Y zi .

• Return sk = (x, y, z1, . . . , zl), and pk = (q,G, G, g, g, e,X, Y, {Zi}, {Wi}).

CL.AskSig: the algorithm inputs the committed message M = gm
(0)

Πl
i=1Z

m(i)

i ,
where M is commitment to a set of messages (m(0),m(1), . . . ,m(l)), signer’s secret
key sk = (x, y, z1, . . . , zl), and public key pk = (q,G, G, g, g, e,X, Y, {Zi}, {Wi}).
Then it continues as follows.

• The user sends a proof of knowledge of the commitment’s opening to the signa-
ture issuer.

PK{(u(0), . . . , u(l)) : M = gu
(0)

Πl
i=1Z

u(i)

i }

CL.IssueSig: The signature issuer will run the algorithm, and acts as follows if
satisfied with the proof of knowledge of the commitment opening.

• The issuer chooses a random α → Zq , calculates a = gα. Let Ai = azi , for
1 ≤ i ≤ l, let b = ay, Bi = (Ai)

y . Let c = axMαxy .

• The user outputs the signature as σ = (a, {Ai}, b, {Bi}, c).

CL.Verify: the algorithm is run by the user to verify the correctness of the sig-
nature. It inputs pk = (q,G, G, g, g, e,X, Y, Zi), message M , and signature σ =
(a,Ai, b, Bi, c), and checks as it follows.

• {Ai} were formed correctly: e(a, Zi) = e(g,Ai).

5



• b and {Bi} were formed correctly: e(a, Y ) = e(g, b) and e(Ai, Y ) = e(g,Bi).

• c was formed correctly: e(X, a) · e(X, b)m
(0)

Πl
i=1e(X,Bi)

m(i)

= e(g, c).

This signature scheme is a secure two-party computation of a signature on a discrete
logarithm representation of the message M under the signer’s public key. The signer
can only see a commitment to an array of messages where the commitment scheme is
hiding and does not reveal any information about the raw data of the user to the signer.

3.2 System Model
The zkFAITH identity solution comprises a Claimant C who wishes to generate a zero-
knowledge identity proof via a commitment to various claims with supporting docu-
ments (i.e., date of birth, country of residence, complete passport information, driving
license, or medical certificate). This information is signed with their private key and
generates proof of knowledge of the data in the claim. An AuthorityA is a government-
approved organization that can verify the authenticity and integrity of the data submit-
ted by C. If A is convinced that the proofs generated by the C are valid proof that the
commitment information belongs to the Claimant, it adds an authentication tag on the
submitted data that assists in constructing the zkFAITH identity.

There is a verifier V , in our scenario Soonami (or Unbounded DAO), who receives
the authentication tag from theA and adds it to the commitment/proof of C, and issues
the zero-knowledge identity of zkFAITH to C.

A Compliance Officer O is a third-party regulatory trusted organization wishing
to trace transactions or activity of potentially malicious claimant (owner of particular
zkFAITH identity). Furthermore, a Compliance DAOD is a decentralized organization
whose sole purpose is to govern the compliance access to zkFAITH of the Compliance
Officer via a trusted voting mechanism.

The zkFAITH is a protocol that aims to create compliant data proof for identity,
medical data, rights, membership, and other forms of personal data stored in a secure
wallet with on-chain verification and data integrity check by a recognized authority,
therefore providing real-world compliance, a form of KYC and usability without com-
promising or revealing user data.

Each identity is not self-sovereign and can not issue a claim on another identity
(person, organization, or system/machine), preserving compliance and verifiability of
the claimed data. The protocol is zero-knowledge; therefore, the identity of the parties
and transmitted data reveal no information about the parties or the transactions.

The C starts the protocol by sending their documents and public key with a com-
mitment to them, and wallet id number, to the authority A, who checks their validity.
If A is satisfied with the correctness of the received information, it generates a tag and
sends the same committed values to V . Then, C sign (commit to) to the information
and send the commitment and proof of an opening to the V . The verifier signs the
claimant’s commitment with their private key. Then they generate proof of knowledge
of the signature and send them to the claimant; a unique zero-knowledge identity for
each user.

6



This procedure is a one-time operation. Later, suppose the users desire to prove
their eligibility for accessing a specific web service in which the only requirement is
proving the user is above 18 years old. In that case, it suffices to generate a subproof of
knowledge of the user’s birth year and attach it to the zkFAITH identity. Showing the
zkFAITH identity along with this subproof can convince the website to grant access
to the user and allow them to benefit from their services. We explain the interactions
between parties in Figure 1.

3.3 Security Goal
The proposed solution’s security goal is to protect the privacy of individuals and pro-
vide data integrity. Privacy means that in any step of the protocol, any adversarial
behavior cannot bind the result of the protocol interactions to any specific claimant.
Various deployments of the zkFAITH Id are unlinkable to each other and reveals no-
body’s identity. We assume that the authenticator, A, is a trusted party with no access
to the system parameters, and no information storage related to the individuals after
authenticating them is permitted.

The authorityA is a trusted party. However, we assume that it only controls the va-
lidity of the provided document and does not store them. In our scenario, the claimant
C can be controlled by malicious adversaries who are allowed to alter the protocol in-
structions and seek to modify the inputs to corrupt the system are among instances that
our security goals address. On the other side, the verifier is semi-honest who follows
the instructions of the protocols and cannot modify the data. However, it can be curious
and can get unauthorized information from the interactions and outputs of the protocol.
The authenticator and verifier in real life scenarios are not colluding because such a
colliding will endanger the reputation of the both organisations.

3.4 Design Challenges
This section lists potential attack scenarios a malicious adversary may deem to at-
tempt in our system model. We also outline our proposed solution for each scenario.
While the attacks are not confined to the listed, we emphasize the design thinking
that would overcome the security challenges by determining an intuition of the crypto-
graphic primitives.

One possible attack scenario is when a malicious user (hereafter known as ”at-
tacker”) generates fake profiles using the identification information of other honest
users (hereafter known as ”claimant”). Let us assume that a claimant obtains a zk-
FAITH identity on their passport. The attacker, who owns no driving license, takes
control of the claimant’s document and submits it to ask the verifier for a zkFAITH on
the driving license by committing to their driving license information and the malicious
user’s public key. If the verifier is convinced with the claimant’s proofs, it issues the
zkFAITH for the malicious user. We defeat this attack by requiring an authentication
step before issuing the zkFAITH. The claimants and the validity of the represented
document should be authenticated, and after a tag is generated and sent to the verifier,
it continues the protocol. Otherwise, no new zkFAITH for the provided driving license
is generated, and the protocol halts.

7



Figure 1: Interactions of the parties

Another possible scenario is that the verifier issues an identity on arbitrary mes-
sages not provided by the claimant and uses the claimant to access some services
through them. The protocol prevents the attack by requiring the claimant to check
the issued signature by the verifier for the ”correct computation” on the provided data.
The protocol aborts if the generated CL signature by the verifier does not satisfy the
verification step of the claimant.

Another scenario is when an organization with some criteria to allow the users
to access their services requires the claimants to prove that they meet their required
criteria. They can relate two shown credentials to each other and trace them back to
identify the individuals. We defeat this attack by deploying a zero-knowledge-proof
system that is randomizable. Various shows of the zkFAITH on the same document or
two zkFAITH issued for different documents of the same claimant are not linkable.

3.5 zkFAITH Construction
This section combines all the preliminaries and constructs a zkFAITH protocol. The zk-
FAITH protocol comprises of Faith = {F.Setup,F.KeyGen,F.Auth,F.Ask,F.Issue,
F.Show,F.Revoke}. The definition of each step is explained as follows. We assume
that each user is pre-issued an identity document by the government. They receive a
document doc with inf i to be each section of the doc kept as a secret. Moreover, each
user posses a unique wallet id, wid.

Set up and Key Generation:

• ppF ← F.Setup(1λ): The algorithm takes a security parameter λ, calls the

8



CL.Setup and outputs the system parameters ppCL. It assigns ppF = ppCL and
inputs them to all of the below algorithms.

An automated smart contract is required to view the public parameters, which
can be implemented in the zkFAITH smart contract. The initial input values are
passed at the time of deployment to the contract constructor. It is visible by
everyone in form of a pure function or a constant variable. This step eliminates
the trusted setup requirement.

• (ski, pki)← F.KeyGen(ppF ): Each party on the input ppF calls the key gener-
ation algorithm of the CL signature CL.KeyGen locally to generate a key pairs
for each user i.

Request:

• R← F.Auth(wid, doc, Com(pkC), Com(doc)): C sends previously government-
issued doc = {inf1, inf2, . . . , infl}with a commitment to its value, Com(doc),
the wallet id, wid, and a commitment to their public key Com(pkC) to the au-
thority. We assume that A deploys a mechanism such as face recognition to
control that the represented information is correct and belongs to the C. Then, A
outputs a response R = (wid,Com(pkC , v), Com(doc; r), 1) to V . Otherwise,
it aborts the protocol.

• Q ← F.Ask(Com(doc; r), Com(pkC , v)): C takes the commitments to the in-
formation of the claimant’s doc and public key. It calls NIZK.Prove to gen-
erate a proof of knowledge of each infi inside the doc and outputs πdoc on
the given identity information. Moreover, it repeats the same procedure for
public key and outputs a proof of corresponding secret key πpk. The C sends
Q = (Com(pkC ; v), πpk), (Com(doc; r), πdoc)) to the verifier V using the wal-
let address that matches the wid from the previous step. In this scenario, Soon-
ami is the verifier who issues the zero-knowledge identity to the claimant.

Issue:

• σ ← Issue(R,Q): The verifier inputs the authentication response from A for
the corresponding wallet id of the claimant excluding is wid and 1 parameters. It
also receives the request Q from the C. Then, V compares the commitments from
R and Q to be the same. Then, V calls NIZK.Verify(πdoc, πpk) and if the output
is 1, then verifier calls the CL.IssueSig on the Com(doc; r), Com(pkC , v), and
the wid, outputs σ.

Moreover, the verifier encrypts the request [Q] = Enc(Q, pkO) and [σ] =
Enc(σ, pkO) of the claimant σ under public key of O. It adds wid and sends
E = (wid, [Q], [σ]) to the compliance officer. This values are stored in a list by
the compliance officer.

C calls the signature verification algorithm CL.Verify(σ, pkC , doc, wid)→ 0/1.
It takes as inputs the signature σ, public key of the claimant, and the infi. If C
is convinced that the signature is correctly generated on the previously provided
data, it outputs 1, and 0 otherwise.

9



The claimant generates a commitment to this signature and a proof of knowledge
of the signature. It outputs zkFAITH= (Com(σ;u), πσ) is the unique zero-
knowledge identity of the user for the provided document of the claimant.

Show:
We assume that there is an organizationM with some defined criteria to provide

access to its services. As an example, validity of claimant’s visa date is required at a
hotel reception to accept the C as guest. We call this criteria µ and C is required to
prove that the previously issued zkFAITH, contains a valid visa expiry date that meets
theM’s requirement. C acts as it follows.

• The claimant calls the proof generation algorithm of the NIZK proof system and
generates the proof that infi inside the doc meets the access requirement µ. It
runs NIZK.Prove(zkFAITH, µ) and sends the proof πµ to theM.

• The claimant also needs to prove of possession of a valid zkFAITH. i.e., a
membership proof to show that the zkFAITH exists in the O’s list L. It calls
NIZK.Prove(wid, L, zkFAITH) and generates πL.

• The claimant outputs (πµ, πL) and shows it to theM as a proof of knowledge of
the correct criteria and proof of knowledge of a correct credential from a verifier.

Revoke:

• In case of fraud or change of any information in the previously issued document
by the government, with the vote ofD, the compliance officerO decrypts E, and
revokes the signature issued for the specified wid and deletes it from the list L.

The above protocol protects privacy of the individuals when they request a zero-
knowledge universal identity. Moreover, data integrity and authenticiy is also provided
by deployment of this solution. We extend Figure 1 to illustrate the deployments of the
algorithm in the presence of a smart contract in Figure 2.

4 Discussion
The protocol introduced in section 3 perfectly protects individuals’ identities in de-
centralized platforms. The authority A is a trusted party. However, it has no access
to the common reference string generated during the protocol and parameters of the
zero-knowledge protocol. Moreover, it will not store any information related to the
parties. The ”request” protocol leaks no information about the identity or raw data of
the claimant since the commitment scheme is perfectly hiding. In real-world scenarios,
the verifier is an automated smart contract. Its procedures are pre-defined. Hence there
is no room for collusion between authority and the verifier contract. Later on, when
the zkFAITH is deployed to access various services during the ”show” phase, it leaks
no information to the service provider. Since the identity and generated proofs are ran-
domizable, different usage of it is unlikable to each other. The service providers cannot
link two shown zkFAITH’s of the same claimant to each other and reveal the claimant’s

10



Figure 2: Full Construction of zkFAITH in the Presence of Smart Contract.

identity. The relevant authority must have issued the data (i.e., Passport Office, Police,
Vehicle Agency, Medical board). Hence, data schema and its format are known. Us-
ing CL signatures guarantees data integrity since the data structure is preserved in the
process of signature/proof generation.

5 Conclusion and Future Work
We designed a zero-knowledge identification protocol, zkFAITH, and developed its
verification procedure. We showed that the devised solution could be used as an anony-
mous credential to access various organizations’ services with specific criteria. We
proved that the zkFAITH solution is practical in real-world scenarios. It is a privacy-
preserving protocol that simultaneously provides integrity and authenticity of the data.
We showed with no trusted setup how our solution could be implemented in decentral-
ized platforms and work with smart contracts with minimum gas fees.

11



As the second part of the protocol for future work, we will define compliance. Each
user can create a transaction deploying the zkFAITH protocol and prove its correctness
and eligibility for making the transaction with zero knowledge to a potential provider.
The transactions and the proofs perfectly hide the origin, destination, and values inside
the transactions against a malicious verifier.

Moreover, an ”update” protocol will be added to the scheme for scenarios where
some parts of the previously issued document are changed, such as expiry dates. The
protocol dynamically updates the altered information inside the zkFAITH with no re-
quirement of initializing the entire system from scratch by deploying malleable signa-
ture schemes.

Finally, to increase the level of security and privacy in the scheme, an SDK will
be embedded in the authentication part to allow the authenticator access to the system
parameters and issue/verify commitments or signatures.

12



References
[1] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.

Deco: Liberating web data using decentralized oracles for tls. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pages 1919–1938, 2020.

[2] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. zk − creds:
Flexible anonymous credentials from zksnarks and existing identity infrastructure.
Cryptology ePrint Archive, 2022.

[3] Jens Groth. On the size of pairing-based non-interactive arguments. In Annual in-
ternational conference on the theory and applications of cryptographic techniques,
pages 305–326. Springer, 2016.

[4] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Annual international cryptology conference, pages
56–72. Springer, 2004.

13


